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Learning Goals

organic chemistry is the basis of polymer science and soft matter research
organic chemistry deals with molecular compounds of carbon

carbon is always tetravalent

carbon can attain different hybridization states, coordination geometries
carbon forms single, double, triple bonds to other carbons and heteroatoms
therefore, a vast array of binding options, molecular geometries

carbon is always tetravalent
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1.1 Organic Chemistry & Soft Matter Research
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odorants

The Role of Organic Chemistry for Everyday Life

pharmaceutics food & consumer goods
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Examples of Natural Polymers: Polysaccharides
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® biomaterials: hierarchical structures on different length scales for optimized performance
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Ritchie, Nature Mater. 2015, 14, 23
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Examples of Natural Polymers: Peptides

® Primary Structure
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defined macromolecule from 20 amino acids

® Secondary Structure

3D form of local segments (a-helices, B-sheets) as the
result of defined patterns of hydrogen bonds

® Tertiary Structure

geometric shape of the protein as result of supramolecular
interactions between the amino acid side chains (hydrogen

bonds, S—S bonds, electrostatic and van der Waals
interactions)

® Quaternary Structure

aggregation of multiple proteins into multi-unit complex

® proteins are defined macromolecules formed by concatenation of amino acid repeat units
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Nanostructure and Properties of Spider Dragline Silk
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Material Strength Toughness Stiffness Energy at Break  Extensibility
Omax / GPa 103 kJ m-1 GPa k) kg1 Emax |/ %
Spider Silk 1.1 160 10 100 27
Nylon 1 80 15 18
Kevlar 3.6 50 100 30 3
Steel 1.5 6 200 1 1
Rubber 0.001 10 1000

® spider silk’s high specific toughness due to hierarchical structures on different length scales

“PFL Scheibel, Polymer 2008, 49, 4309.
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crop protection

The Role of Organic Chemistry for Technology

pharmaceutics

new materials
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Polymer Science

bio-based fossilébased

Natural Polymers Semi-Synthetic Polymers Synthetic Polymers

Definition of the term “polymer” by Hermann Staudinger

Nobel Prize for Hermann Staudinger (concept)

Nobel Prize for Karl Ziegler and Giulio Natta (olefin polymerization)
Nobel Prize for Paul J. Flory (polymers in solution)

Nobel Prize for deGennes (phase transitions)

Nobel Prize for Heeger, MacDiarmid, Shirakawa (conductive polymers)
Nobel Prize for Grubbs, Schrock, Chauvin (Olefin Methathesis)

Muhlhaupt, Angew. Chem. Int. Ed. 2004, 43, 1054.
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Major Applications of Plastics

PACKAGING BUILDING & CONSTRUCTION AUTOMOTIVE
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Sustainability Challenges of the Plastics Industry
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global plastics production

e continued plastics proliferation driven by low cost, light weight, performance, durability, design freedom

Sustainability Challenges of the Plastics Industry

® plastics production doubles every 15 years, has produced 6.3 billion tons of plastic waste to date
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® plastic waste and microplastics pollution are among the most serious challenges faced by mankind
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® |inear produce-use-discard model needs to be transfomed into a circular plastics economy

Heinrich-Boll-Stiftung, Plastikatlas, 2019; The Pew Charitable Trust & SYSTEMIQ, Breaking the Plastic Wave, 2020; CIEL, Plastic & Climate, 2019.
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Awareness for the Plastic Waste Crisis Is Growing
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Plastics Weathering and Degradation

Fragmentation and release of chemicals
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“PFL MaclLeod et al., Science 2021, 373 (6550), 61-65.
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Plastics in The Earth System

Fig. 1. The global plastic-carbon cycle circa 2015. Black
arrows represent fluxes of plastics between compartments.
Blue fluxes represent processes that remove plastics
(e.g., incineration to carbon dioxide, or photodegradation to
oligomers). References for plastic mass values are
shown in parentheses. Plastic-carbon values are calculated
as 0.83 times plastic mass (15). Question marks indicate
plastic-carbon cycle terms without published estimates.
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Plastics in The Earth System

Projected accumulation = 2095: 70 Pg-C

a + (b x years since 1950) + ( ¢ x years since 19502) + (d x years since 19503) plastic-C predicted to
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Fig. 3. Accumulation of plastic-carbon in the Earth system. Accumulation of plastic up to 2015 calculated
as production minus incineration (15). Projected accumulation calculated assuming current trend (cubic
growth) for plastic accumulation will continue into the future. The cubic model had the lowest Akaike

information criterion of models in JMP. Actual future plastic-carbon accumulation will depend on hard-to-

predict socioeconomic factors. Biomass numbers refer to living biomass.

Stubbins et al., Science 2021, 373 (6550), 51-55
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Plastics Production, Waste, and Pollution

® plastics production keeps growing, follows a linear value chain paradigm
® global production 335 Mt in 2016, 60 Mt in Europe
® 40% for packaging, will double until 2034

® plastics waste & pollution are major socioeconomic challenges
® global recycling rate stagnates at 14%

® 40% ends up in landfill,10% enters the ocean

® microplastics pollution is a global environmental desaster
® atmospheric transport to remote areas
e infiltration of the entire food chain

® 3 solution requires a rethinking of the recycling system and economy

Nature Geoscience 2019, 12, 339; Plastik Atlas 2019.
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Current Commodity Plastics and Recycling

® EU Legislation: all packaging plastic reusable or recyclable by 2030 ! Reduce, Reuse, Recycle !
® efficient recovery, sorting, separation and recycling require reduced set grades, components

global plastics production packaging plastics production global market bioplastics (2021)

460 Mt, 593 bn USD 39% of all plastics, 255 bn USD 2.6 Mit
rPS <1%

rPET 50%

rPP 3%

PET (1%) bio-sourced
" Oy . . .
rPE 2-5% < 0.1% bioplastics < 1% bioplastics not degradable

® Challenge: reduced set of polymer materials and components must be adapted to the broad range
of processing requirements and final product performance solutions they are intended to replace !

=PrL EASAC, Packaging Plastics in the Circular Economy, 2020.
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Systems View of the Circular Plastics Economy
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® addressing the plastic waste crisis requires changes at systems level involving many stakeholders

cPrL
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Polymers & Soft Matter at the Institute of Materials
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“Everything is Made of Something”

® materials science is in many ways a foundational discipline for all other fields of science & engineering

System Performance

Synthesis & Processing

Materials Properties

Structure

® diversity and interdisciplinarity are inherent and paramount to the field of materials science, which
is also populated by researchers from physics, chemistry, biology, and engineering

Ashby, Shercliff, Cebon, Materials: Engineering, Science, Processing and Design, Elsevier, 2018.
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The Future of Materials Science

® materials science is evolving and needs to respond to societal and technological challenges

System Performance

Synthesis & Processing Materials Properties

Structure Sustainability

Computations, Data & Al

® our vision of the future of materials science emphasizes the convergence of synthetic & biological
worlds, and in particular the major role of sustainability and digital technologies
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EPFL Institute of Materials

® materials science at EPFL is a diverse, well-balanced and thriving scientific community !

QS World University Rankings 2023

Faculty Faculty Gender Balance Materials Science
25 25 :
1 miir Massachussetts Institute of Technology USA
20 40% 2 e Stanford University USA
o . . 3 & University of Cambridge UK
4 Harvard University UK
5 e University of California, Berkeley (UCB) USA
. — . 6 “’* Nanyang Technological University, Singapore (NTU) Singapore
emale 7 E& University of Oxford UK
8 550, 8 == EPFL CH
o | o 0 9 == |mperial College London UK
10 @& Tsinghua University China
associate 11 [l ETH Zurich CH
12 N~us National University of Singapore (NUS) Singapore
7 tull 2 male 13 = Georgia Institute of Technol USA
gia Institute of Technology
3ssistant 14 caen California Institute of Technology USA
o e = 15 == Northwestern University USA
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2002 2007 2012 2017 2022

2002 2007 2012 2017 2022

® consistently ranking in the top 10 materials science departments since 2018 !

e world reputation in soft, construction, and quantum materials, as well as modeling & computations



Soft Matter Activities at the Institute of Materials

Laboratory of Mechanical Metallurgy (LMM) Andreas Mortensen
Laboratory of Construction Materials (LMC) Karen Scrivener
Polymers Laboratory (LP) Harm-Anton Klok
Tribology and Interfacial Chemistry Laboratory (TIC) Stefano Mischler
Laboratory of Semiconductor Materials (LMSC) Anna Fontcuberta
Laboratory of Organic and Macromolecular Materials (LMOM) Holger Frauenrath
Supramolecular Nanomaterials & Interfaces Laboratory (SUNMIL) Francesco Stellacci
Laboratory of Theory and Simulation of Materials (THEQOS) Nicola Marzari
Laboratory of Photonic Materials and Fibre Devices (FIMAP) Fabien Sorin
Laboratory of Computational Science and Modelling (COSMO) Michele Ceriotti
Laboratory of Thermomechanical Metallurgy (LMTM) Roland Logé

Soft Materials Laboratory (SMAL) Esther Amstad (PATT)
Laboratory of Nanoscale Magnetic Materials & Magnonics (LMGN) Dirk Grundler

In Situ Nanomaterials Characterization with Electron (INE) Vasiliki Tileli (PATT)
Laboratory for Processing of Advanced Composites (LPAC) Véronique Michaud
Programmable Biomaterials Laboratory (PBL) Maartje Bastings (PATT)
Laboratory for Sustainable Materials (SUMA) Tiffany Abitbol (PATT)
Laboratory for X-ray Characterization of Materials (CAM-X) Marianne Liebi (PATT)

cPrL



Soft Materials Laboratory (SMAL, Esther Amstad)

Capsules from Self-assembled Block Copolymers Early Stages of Crystallization

water/oil/water
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vesicle microfluidic spray drier

spray dried nanoparticles
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® SMAL focuses on using polymers for compartmentalization and microstructure control
EPFL



cPrL

Laboratory of Advanced Composites (LPAC, Veronique Michaud) ==

e |PAC focuses on the fundamentals of composite and hybrid materials processing

Biodegradable foams for medical Bioinspired self-cleaning and
applications wear-resistant surfaces

ciciy )

S TO

L&

, WORLDCUP /

B
Flax Power Ribs (Bcomp) Textiles Agilis project: composites, injection Sandwiches Synthetic yellow rose petal surface z
molded polymers, foams with pepper grains —

® fundamentals of polymers and composite materials processing
® surface and interfaces (bioinspired surfaces, adhesion and bonding)
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Polymer Laboratory (LP, Harm-Anton Klok)

Polymer Surfaces & Interfaces Precision Polymer Synthesis Polymer Bioconjugates

POLYMER
CONJUGATES

CHEMISTRY MEETS BIOLOGY

FUNCTIONAL POLYMERS
via

POST-POLYMERIZATION MODIFICATION

® peptide/protein-based polymer materials and hybrid materials for polymer therapeutics

® surface-initiated polymerization and polymer brushes for microarrays, chemical sensing
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Laboratory of Macromolecular and Organic Materials

® universal supramolecular approach to control diverse functions in different materials classes

electronic properties mechanical properties chemical reactivity
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organic semiconductor hierarchically structured carbon nanomaterials
nanostructures supramolecular materials at room temperature

® control of the balance of order and disorder across length scales to tailor structure and function
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From Molecular Design to Materials and Devices

molecular design & synthesis

O synthetic chemistry,
NMR, MS, MALDI

2

O

materials processing

~  extrusion, drawing, blowing,
injection molding, microfluidics

2

O

device fabrication

) damping structures, railpads,
food containers, OFETs

B0 R
2P

N

physicochemical characterization

UV/vis/NIR, CD, fluorescence,
IR, Raman, ESR, DLS, CV

(2

O

materials characterization

D  AFM, TEM, SEM, SAXS, WAXD

rheology, DMA, mechanical testing
¢

O

device testing & applications

damping, acoustics, barriers,
packaging, recycling, degradation
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Poly(e-caprolactone) (PCL) - A Biodegradable Aliphatic Polyester

HO
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OJ\/\/\/O H
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e polyethylene-like properties

e petroleum-based or bio-based

e hydrolytically cleavable ester groups

® FDA-approved

e implantable biomaterial

® biodegradable
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® PCL has limited engineering applications due to poor thermal, rheological & mechanical properties

cPrL
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End Group and Additive Co-Assembly

e problem: high polymer molecular weight and end group aggregation are mutually exclusive

® solution: reinforcement by co-assembly of ditopic polymer end groups and a matching additi

@E{Q\ S\ [

high molecular weight polymer with
/\ ditopic hydrogen-bonded end groups
dolsy T
?/M reinforcing additive using the

ve

% same supramolecular motif
without additive: co-assembly into reinforced
poor network formation nanofibril aggregates

® tailorable property profiles based on supramolecular networks independent of molecular weight
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Supramolecular Modification for Tailored Melt Properties and Product Performance

new nanofibril } tailored melt } new / improved } materials
phase regime strength & elasticity processing options orientation
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Learning Outcomes

® organic chemistry is the basis for polymer science and soft matter research
® soft matter research has increased in relevance in our department

® relevance will further increase with focus on sustainable materials
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